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PREFACE 

The work reported herein was conducted by the Arnold Engineering Development 
Center (AEDC), Air Force Systems Command (AFSC). The results were obtained by ARO, 
inc., AEDC Group (a Sverdrup Corporation Company) under ARO Project Number 
V3 ! K-37. The Air Force project manager was A. E. Dietz. The manuscript was submitted 
for publication on October 9, 1980. 

Mr. B. P. Curry is presently employed by Calspan Field Services, Inc., AEDC Division. 
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1.0 INTRODUCTION 

A recent series of experiments was performed at Arnold Engineering Development 
Center (AEDC) to investigate the feasibility of improving the quality of System Generated 
Electromagnetic Pulse (SGEMP) simulation in AEDC space chambers. These experiments, 
which were carried out in a 12-foot sphere in the yon I~rmdn Gas Dynamics Facility 

(VKF) at AEDC, have demonstrated that free-space boundary conditions can be simulated 
in a test chamber by employing suitably designed damping grids to attenuate reflections 

from the chamber surface. A centrally located, pulsed biconical antenna was used in the 
experiments as both the source and the detector of  transient electromagnetic waves; 

spherically symmetric dampers were located at various radial positions between the source 

and the sphere surface, as shown in Fig. 1. The results of  these experiments and the damping 

theory presented in this report will provide a basis for SGEMP facility design. 

The purposes of the theoretical treatment developed in this report are to establish a basis 
for comparing existing experimental data with theoretical predictions, to validate the 
experiments and theory, and to help determine optimum damping configurations. 

Descriptions are presented of the EMP propagation formalism and the methods of 
solution which will be employed in a computer program to be based on this work. The report 

does not include a description of the code. 
t 

2.0  G E N E R A L  P R O P E R T I E S  OF E L E C T R O M A G N E T I C  F I E L D S  

2.1 WAVE PROPAGATION IN A DISSIPATIVE MEDIUM 

CONTAINING SOURCES 

To discuss electromagnetic waves which propagate from a central source region, it is 
useful to first state Maxwell's equations (in Gaussian units) for fields arising from specified 

sources embedded in a medium that is isotropic everywhere except at specified interfaces and 
boundaries (Ref. l): 

V . D  = 4np= ~ = err-J÷ 
• C C ( ~ t  

1 
V . B - -  o , V×r  = ( i )  

c a t  

It is assumed that field quantities and induced quantities are related to each other linearly as 

B -- IzH , D = e g  land J = a g + J o  (2) 

5 
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Figure 1. Damping grids installed in VKF 12-ft research sphere. 
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where ~, e, and o are, respectively, the magnetic permeability, dielectric permittivity, and 
electrical conductivity of the medium. It is assumed that the source current density, Jo, and 
charge density, Qo, exist only within a specified region. In addition, these quantities must 
satisfy the continuity equation 

0 p,. (7 ", t) 
0t 

+ V ' '  Jo (r', t) = 0 (3) 

where," is a vector from the origin to an infinitestimal element of the source distribution. 
Using standard vector manipulations (see, for example, Refs. '1 and 2), one can derive the 
time-dependent elect~'ic and magnetic field wave equations from Eqs. (1) and (2). 

v ~ . . . .  ,,[o2~°~.~o,~ + ,.oo¢),_ o, _- ,.,°~ aJ'o~, + ,.__v,-T, 

v ~, ~f~_~'~ 
-o2 \~-V + 

4~o aft : __4" VXJo 
c (4) 

Solution of these equations is greatly facilitated by transformation into the frequency 
domain, by using the following convention for Fourier transform pairs: 

foo Q(~, to) = 0 ( r ,  t) e i~Ot clt 

O (r ,  L) = 12rt f _ :  "~ ( r ,  ~)e  -itOt clo (5) 

In Eq. (5), the functions ~ (K', ¢0) and Q (r, t) may  be either vectors  or scalars, and the use of 
the tilde over a quantity denotes its evaluation in the frequency domain. The convention 
used here is that of most modern physics texts. Electrical engineering texts and some optics 
texts use the convention of replacing " i "  with "- i"  (sometimes.stated as " - j " )  in Eq. (5) and 
succeeding equations. 

I 

The frequency domain wave equations for the electric and magnetic fields are obtained 
from Eqs. (3) through (5) and are stated as 

#eo~ V(V. Jo) 
V 2 +k2E = - 4 h i  "~'2Jo + toe 

C 0 
(6) 
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Gradient  divergence of  the current  in the electric field equat ion results f rom the occurrence 

o f  charge fluctuations in the source region; the gradient divergence causes an essential 

singularity when Eq. (6) is used to obtain the fields within the source region. We shall see, 
later, that  the singularity can be removed by use o f  a gauge t ransformat ion.  

The solutions o f  Eq. (6) will be stated in terms o f  Green's  functions,  which satisfy 
Helmholtz  equations of  the form (Ref. 1) 

V 2G(r',r')+k 2G (r,r') = -8(r-r') (7) 

where~  is a vector f rom the origin to the field observation point,  andS" is a vector f rom the 
origin to a source point.  These Green 's  funct ions have the form 

G ( r , r ' )  = ° ' p ( i k l ' - r ' l )  (8) 

4- I , - , ' 1  

2.2 P R O P A G A T I O N  C O N S T A N T ,  D I E L E C T R I C  C O N S T A N T ,  

A N D  W A V E  I M P E D A N C E  

The propagat ion  wave number ,  k, which appears in Eqs. (6) through (8), is defined by 

2 _ 4fro i 
k 2 = /,t~" c--- ~- ; t = ~ ~ (9) 

where T is the complex dielectric constant  characteristic of  a dissipative medium.  The  real 

and imaginary parts of  the propagat ion constant  are stated (Ref. 2) as 

II~ r -- , , ° ,  ! 

k 1 

In all materials except good conductors ,  the propagat ion  constant  is, approximately,  k = 

k o [1 + (2wtri)/(ec0)], where ko = x /~  c0/c. By contrast ,  in good conductors ,  the propagat ion  

constant  reduces to k = (i + i)/6c, where 6c is the skin depth o f  the conductor ,  defined as 

c (!1) 
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It is noteworthy that t an-  I [(4xa)/(Eto)] is the angle by which displacement current lags 

behind the.true co.nduction current as a wave propagates through a dissipative medium. A 

related concept is the impedance presented to the wave by the medium: 

( 4 ' '  
.7, = 4~r  Z o " 1 t  

c fO3 
(12) 

where Zo = (4~r/c)x/'~'. The impedance of a good conductor is Z = (I - i)/(6o). It is well 
known that the real part of the impedance is purely resistive, and the sign of the imaginary 
part (reactance) depends upon whether wave energy is stored capacitively or inductively. The 
biconical antenna used in the experiments cited earlier is predominantly capacitive, and the 

dampers are assumed to be purely resistive. The impedance of free space is 7-,sp = 4x/c = 
4.192 x 1 0 - l 0  sec/cm in Gaussian units. [Zsp .is equal to 120 ~" ohms in international units 

(SI).] In all damping calculations the ratio of  the damper impedance to the impedance of the 
intervening medium occurs; hence, the choice of units is immaterial to the formulation of 

the multipole expansion boundary value problem. 

2.3 ANTENNA IMPEDANCE 

The concept of antenna input impedance is considerably different from the wave 
impedance discussed above. It incorporates the resistive effect related to the loss of energy 
by radiation, if the antenna were sufficiently long, the effect of the caps could be ignored in 

computing antenna impedance because the current would be damped (by radiation 

resistance) enough to suppress reflection of  the current pulse from the antenna caps. Since 
this is not the case at frequencies of interest in the present experiments, the antenna 
impedance must be computed by dividing the voltage difference between the antenna feed 
terminals (calculated along an arc of constant radius) by the total current flowing through a 

circular area whose radius is equal to the antenna terminal radius. Equivalently, one may 
take twice the voltage difference between the top antenna and the ground plane which 
bisects the biconical array between the feed terminals (see Fig. 2). The required current can 

be obtained from the frequency-domain form of Ampere's law. 

7 (13) x [l  = __4n _ i __ea~ 
C ¢ 

The total current flow is obtained by integrating Eq. (13), using Stokes' theorem 

l -= . ~ c l E  = --c; El .ell ~ o irt°-- b~- ~ d ~  
(14) 



A E DC-TR-80-58 

where z is along the axis of  symmetry and, thus, perpendicular to the ground plane, Z; is the 
area of  a circle whose radius equals the antenna feed radius, and the line integral is evaluated 
around that circle. Since the current fluxes in the two halves of  the antenna are out of  phase, 
the electric field term in Bq. (14) should vanish by symmetry, leaving 

= - -  = r sin 0 c (r, 0, ~ = 0) 115) 
4n 

C->(~ i 

• I 

\ 
\ \ , ,  

\ 
\ 
\ 

/ 
/ 

/ 
I / \ 

,' .-----1-----.2, 
/ ' "  I "\ 

r 

\ / 

Figure 2, Coordinate system for  the electrical description of  a 
biconicat antenna,  

10 
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where 5 sin 0c is the feed radius of the antenna, and 0c is the antenna half-cone angle. The 
voltage difference between the two halves is just 

.'/2 ~ r'/2 ,.., 

~ = 2  0=f0o E ' d ~  = 2 L / c  E0(r' 0' ~ = 0) d0 (16) 

Thus, the antenna impedance is 

2 ~  0 ($, 0, ¢, = 0) dO 

Z A = V/l =4- 0.c (17) 
.,n 0~ H4' ~8, 0~, 4' = 0) 

In these equations, the fields are evaluated at 0 = 0 (for convenience) since there is 
axisymmetry. Through the multipole expansion which will be developed later, Eq. (17) 
contains both the effect of the source characteristics and the damping and reflecting 
properties of the cavity. In fact, the antenna impedance for free-space boundary conditions 
can be obtained simply by setting the multipole coeffieients that represent standing waves in 
the region between the source and the first damper equal to zero for Eq. (17). 

2.4 FREQUENCY RESPONSE OF THE ANTENNA-CAVITY SYSTEM 

After the fields have been obtained and Eq. (17) has been evaluated, the frequency 
response of the entire system (antenna plus chamber with damping grids) is obtained 
(assuming that there are no losses in the transmission line and that it is perfectly matched to 
the antenna) from transmission line theory (Ref. 3). 

Iout  (.oJ) Z A ( o )  - Z c 

[. C~,,) z A Co) + z (18) 
i n  

where Zc = (Zsp/Tr) & cot (0c/2) is the (purely resistive) characteristic impedance of the 
antenna. The procedure for comparing theory and experiments is, thus, the following: 

1. Obtain the Fourier transform of the input current pulse (prior to the arrival of 
the first reflection from the cavity). 

2. Calculate the electric and magnetic fields from the muitipole expansion which 
will be derived later. (This step is optional and may be omitted if only the sensed 
pulse waveform is desi.red.) 

3. Calculate the system frequency response from Eqs. (17) and (18). 

11 
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4. Calculate the inverse Fourier transform iota (t) of the current measured at the 

antenna terminals. This result can then be compared with the experimental pulse 
waveform. In performing Step (4), one must account for contributions to 1o.i (t) 

from the negative frequency domain of lore (ta) as well as from the domain of 
positive frequencies. 

3.0 SOLUTION OF THE ELECTROMAGNETIC FIELD WAVE EQUATIONS 
BY USE OF HERTZ-DEBYE POTENTIALS 

The use of Hertz-Debye potentials yields an automatic separation of the solutions of Eq. 
(6) into TM and TE waves. Another advantage of using these potentials is their value as an 

intermediary in the determination of all electric and magnetic field components from the 
radial inhomogeneous solutions of Eq. (6). Formal mathematical properties of these 
potentials are discussed extensively in Ref. 4. These potentials are introduced here in a 

fashion analogous to that of Ref. 2 (pp. 28 - -  30); however, the treatment presented here is 

generalized to include dissipative effects. 

3.1 SOLUTION OF THE HOMOGENEOUS WAVE EQUATIONS 

The Hertz vectors F E (r~ t) and PM (~, t) are introduced as particular solutions to the 

source free form of Eq. (1): 

0 I%. 

I c 8, 

(19) E 2 = V x - -  (" ~l.  

Additional particular solutions of Eq. ( 1 )  a r e  o b t a i n e d  b y  substituting Eq. (19) into Eq. ( l ) ,  

yielding, for the electric field: 

(+ +(+ - -  4 - : l  = V x  × ( 2 0 )  
Ot ~ +3t 

and 
c) 2 P,,:: 

= c" 2 n3l 2 

12 
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The analogous equations for H2 are 

T=v×( * 0 7 - /  
(21) 

and 

Wave equations analogous to Eq. (4) are obtained by use of the following procedure: 

1. The terms -V( V" 0PE/St) and -V(V.  0PM/Ot)are added to the first El equation 
and the first H2 equation, respectively. Since the curl of the gradient vanishes, 
this addition does not alter the results of the next operation and is, in fact, 
equivalent to a gauge transformation. 

2. The second operation consists of taking the curl of  the first El equation and the 
first H2 equation, as well as the time derivative of the second H2 equation. El, 
E2, Hi, and H2 are eliminated from the resulting four equations, to obtain the 
homogeneous wave equations for the Hertz vectors PE and PM in the time 
domain 

4rra~ 0~'E V 2 = 

w 0 - V2 ~!1 o (22) • 
07- = 

The electric and magnetic fields are constructed from E = El + E2 and H = Hi + H2, 
where E] is obtained by inverting the first part of  Eq. (20) and E2 is given by the second part 
of Eq. (19). Similarly, Ht is given by the first part of Eq. (19), and H2 is obtained by 
inverting the first part of Eq. (21). This process is greatly facilitated by Fourier 
transformation. The electric and magnetic fields in the frequency domain are, thus, derived 
from the corresponding Hertz vectors as stated below: 

and 

g = .~ i /zca v x P  M 
4 f?O"  t c 

~OJ 

= x x PM - i - -  xP  g 
C 

(23) 

13 
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The utility of the Hertz-Debye formalism is made immediately apparent upon examination 

of these equations. If the vectors P'~E and P'~M are assumed to be radial in form, then the curl 
of each vector can have no radial component. Hence, the electric field derived from PM and 
the magnetic field derived from PE are entirely transverse. Because of the terms involving the 
curl of the Hertz vectors, the electric field derived from PE and the magnetic field derived 

from PM have nonvanishing radial components. For this reason, the fields derived from the 
electric Hertz-Debye potentials are called transverse magnetic (TM) waves. Similarly, the 
magnetic Hertz-Debye potential 
potentials are defined by 

and 

is the source of transverse electric (TE) waves. These 

P E (r, t) = r ~E (r,  t) 

PM(r' t) = r rr M (r, t) ( 24 )  

It should be noted that the separation of fields into TM and TE waves by use of  these 
potentials is independent of the choice of coordinate system. 

The wave equation satisfied by the Hertz-Debye potentials is derived by use of the 
following vector identities: 

~'ZTxr = 0, V2(~'s) = 2Vs 

and 

where s is any scalar. Equation (22) can now be reduced to the form 

V S × r  = 0 

where 

S /~ (-~l 4rrG) orrE'M 
= - -  + V2 ~E. e 2 ~ at M 

An equation of this type is satisfied either by S = 0 or S as a function only of r. The second 
choice is trivial; the first yields the scalar wave equations for the Hertz-Debye potentials in 
the time domain 

/ I l i a  '| ~' cr / a~r L] '~'1 V2~ 0 
~.2 &-t- , -  - Ot T-:,M = (25 )  

14 
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for either the electric or magnetic Hertz-Debye potential. Fourier transformation yields the 
corresponding scalar Helmholtz equations in the frequency domain: 

V 2~ k 2"" = 0 nE,M + hE,  M (26) 

3.1.1 Spherical Coordinate Representation of  the Electric and Magnetic 

Fields Derived from the Hertz-Debye Potentials 

The spherical coordinate decomposition of Eq. (23) is essential for two reasons: (1) to 
permit the definition of the boundary value problem posed by the dampers in the spherical 
cavity and (2) to facilitate solution of the inhomogeneous field equations, Eq. (6). The latter 
is accomplished by a treatment similar to that of Ref. 4, using the properties of the angular 
momentum operator L 2, which is the angular portion of the Laplacian operator Vz (detailed 
in Section 3.2). To facilitate the decomposition of Eq. (23), it is convenient to use the 
following vector identities: 

and 

V2 s = I a2(rs) L2 s 
r 0 r 2 r 2 

where the scalar, s, is taken to be either a-~ or a"M. 

The electric and magnetic fields derived from the Hertz-Debye potentials can now be 
stated, quite simply, as 

"" L 2 ~"E 0 [ i /~r.o ' r~ 'M ( 4r ro ' iy1 ' 2  r'~E ] ~ : = ~ - -  ( '"""~ . -  ~ .  l .  
r r c s in  0 aq~ ¢¢o / Or ao 

1+ - - 7 ~  / 

_ (¢,0 
030 s in  0 Or aO 

(27) 

and 

H = r nM 0 i~ 

~ O~ 
02 r ~'M 1 
a r  aO 

-I- -- -t- 
c 030 s i n  0 arO~b 

(28) 
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Analogous equations could be stated for other choices of geometry by expanding Eq. (22) in 
the appropriate coordinate system. 

3 .1 ,2  B o u n d a r y  C o n d i t i o n s  o n  the  H e r t z - D e b y e  Poten t ia l s  

The boundary conditions which are imposed at each interface shown in Fig. 3 are 

continuity of tangential electric and magnetic field components, '~ x E a n d r  x ~ .  Let us 

denote by rTthe approach to the " j th"  interface from outside that interface - -  i.e., 
rj+= rj + ~', where ~" is a positive infinitesimal. Similarly, let rj-= rj - ~" denote the approach 
to the interface from inside it. Referring to Eqs. (27) and (28), we find that the following 

tour matching conditions must be satisfied at each interface: 

r~r'. r ÷ r'~. 
] J 

r~r r~r+" 
J J 

Or@M Or#  M 

4- 
r ~ r l  :--, r j 

~ (,~:)/(1+4~°~)~o, I~(r~ E)/(1 4~)~ 
r~r. r~r l l 

(29) 

in a later section, the multipole expansion of the Hertz-Debye potentials will be presented, 
and a matrix procedure based on Eq. (29) will be used to relate the muitipole coefficients in 

all the regions shown in Fig. 3. 

3.2 SOLUTION OF THE INHOMOGENEOUS WAVE EQUATIONS BY USE OF 

THE HERTZ-DEBYE POTENTIALS AND SOURCE GREEN'S FUNCTIONS 

With reference to the vector identity 

• -_ V 2 V2(V r) r. V+2V-V 

16 
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(where V is either E or H), we can show that the radial components of Eq. (6) must 

satisfy 

V 2(E • r)+k 2(E'- r) =-i k . r  + 2+'7 V" (30) 
k o 

where Zo = ( 4 a - / c ) / ( ~  is the (real) impedance of  the medium (which will usually be free 

space) outside the source, and 

V 2(H.r)+k 2(H.r) - 
Zs p I 0(sin 0 J"o • ~) a'~o • 0 1 

sin 0 a0 O~b (31) 

where Zsp = 4"a'/C is the impedance of  free space. In what follows it is useful to write the 
Laplacian operator asp  2s = [(L2s)/r 2] + l/r(82rs)/(8r 2) where L = -i r × V is the angular 

momentum operator. This operator is extensively used in both classical and quantum 

mechanical studies, and its properties (in the context of  radiation fields) are discussed in 
detail in Refs. I and 4. The eigenfunctions of L 2 are f (f+ 1). The solutions of Eq. (26) are 

constructed for a spherical geometry from 

krrrE, M = Eg, mC~nY~(0.~)~ ¢[(kr), ~ (32) 

Figure 3. Geometry for electromagnetic wave propagation in an 
internally excited hollow sphere containing a single 
damping region. 

17 
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where {qn} denotes a set of multipole expansion coefficients which will later be determined 
for each region of the cavity shown in Fig. 1. The functions ~'t(kr), {'~(kr), and ~dkr) are, 
respectively, Ricatti-H~nkel functions of the first and second kind and Ricatti-Bessel 
functions. ~'t(kr) and ~'~(kr) represent, respectively, outwardly and inwardly propagating 
spherical waves and ~e(kr) represents standing waves (in undamped regions of the cavity). 
The asymptotic limits of the Ricatti-Hiinkel and Ricatti-Bessel functions are, respectively, 

~ L ~  (kr) = exp/+i[kr--n(g+l)]}2 and [~(kr) = sin(kr-rtE)2 
r--,m r ~  

Only the functions ~r(kr) are regular at the origin; hence, only these functions can be used 
within the source region. Properties of these functions are discussed in Ref. 5. 

The solutions of Eqs. (30) and (31) are obtained by use of the Green's function, which 
satisfies Eq. (7). These solutions are then related to the corresponding Hertz-Debye 
potentials through the radial components of Eqs. (27) and (28). The results are 

L2 (~'E)/(1 4- ~,]4"°'i~ = . r  = iZk o 

V" 

• r ' +  2 a--b- C (; ,  ; 3  a 3 ;" 
o (33) 

where Z is the wave impedance defined in Eq. (12), and 

/ I _ . 0 _ 0  ( s inO, j  .~ . )  OtJo "0" ) ]  G ( r , r ' ) d 3 ~  
L 2 (n..1) = H • r = Zsp r a0" o a~b sin 0" r " 

(34) 

where V' is the smallest volume completely enclosing the source distribution and is not 
necessarily spherical, and the Green's function is defined in Eq. (8). 

The potentials in Eqs. (33) and (34) have the form 

krnE, M = ~'f/,m(a~,bf. m) Y~ (0,~) ¢~lCkr) (35) 

where [al~} and [b~] denote the sets of source multipole coefficients for TM waves and TE 
waves, respectively. 

18 
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Ricatti-Bessel functions and spherical harmonics as 

A EDC-T R -80-58 

1)* in terms of the 

G ( r , r ' )  = r '~--Ei~ m ~bl~(kr')~" (kr) Y~ n (0",~b') Yg 
k r t r  

(36) 

With use of this expansion and the orthogonality properties of  the spherical harmonics, the 
source multipole coefficients may be obtained for TM and TE waves by premultiplying Eqs. 
(33) and (34) by Yem*(0,qb) and integrating over a normalizing sphere. 

The result for the TM wave source multipole expansion coefficients is 

o o (37) 

where* denotes complex conjugate. Similarly, the TE wave source multipole coefficients are 

a a ( j  .~,) , / ,V(kr V~  ( O ' ~ ' ) a 3 ; "  
m _ P (s in O ' J  o"  q~')- " ~  o , 

bl~ I~(g+ l )  . r sin 0 (38) 

Equations (37) and (38) are valid for a general source distribution. For an axisymmetric 
source, however, TE waves vanish and the TM wave coefficients reduce, outside a spherical 

region completely enclosing the sources, to 

~J~( 2g + i) 
a~ * a~ = - ~(~+ l) 

:p£ (cos 0") sin O'dO'dr" (39) 

*The Green's function expansion stated in Ref. 1 involves the'spherical Bessel functions Jt(kr) and spherical 
Hankel functions h~(kr). The Ricatti functions are simply the products of these functions with their arguments. 
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Obviously, one must know the source current distribution to use these equations. Equations 
(37) and (38) are presented because of the necessity to consider arbitrary source currents 

when satellite components are irradiated in a test chamber. In the next section, Eq. (39) will 
be evaluated for an uncapped biconical antenna. In addition, rigorous coupled integro- 

differential equations will be derived in order to calculate the current distribution 

characteristic of a capped biconical antenna. In succeeding sections, the cavity boundary 
value problem will be solved and the resulting regional multipole coefficients will be related 

to the source multipole coefficients stated in Eqs. (37) and (38). 
, t  

3.2.1 Source Muitipole Expansion for an Uncapped Biconicai 
Antenna Radiating into an Unbounded Medium 

Although its use in analyzing the existing test chamber i'esults requires that Eq. (36) 

should incorporate the current distribution calculated (with the equations presented in the 
next section) for a capped bicone, some of the properties of the source multipole coefficients 
can be demonstrated by evaluating Eq. (39) for a specific current distribution: Schelkunoff's 

mode solution (Ref. 6) for an uncapped bicone. For this case, Eq. (39) can be evaluated in 
closed form. Referring to Fig. 2, we consider a system of two cones generated by revolution 
of the line segment d-6 about the positive and negative z-axes. We shall require that the 

radial gap, 2~, between the cones be small. 

The form assumed for the current distribution is purely radial: 

3 

Jo ( r ' )  - ~" ~'o ( i ' )  (c°'r')ES(c°sO-c°sOc)-~(c°sO+c°sOv)] (40) 
2~r r "2 i = l  

This form is a generalization of the current distribution stated in Ref. 1 for a thin, linear 

antenna. The primary current mode is sinusoi~lal: 

~o (1)(co, r') -- To (to)sinEko(d-r')J 

The reflected mode is 
/ 

-- cos k o(d-,' "~o{2)(¢9, r') = - i [o (a#) Ze 

20 



AE DC-TR-80-58 

and its contribution to Eq. (39) vanishes. The higher-order modes, which arise from the 

reaction of  the radiated fields on the antenna, are stated (from Ref. 6) as* 

T (3) (co, r') - "p 4~ + 3 ~-lg + 1 (kd) ~b2~ = 1 (kor') (41) 
2rt Zc [~=o (~+ I) (2~4 l) 

The reader should note that 1o (~) is no t  the current measured at the input terminals. It is a 

complex quantity which is related to the input current and voltage by the following pair of  
equations: 

T'(oa, 8) = 1"o (co) sin ( k d ) - i  - - c o s  (kd) 
Z e 

and 

(oa, (5) = "T O (oa ) [Z  A sin (kri) - i Z c cos (kd ) ]  (42) 

The antenna impedance in these equations is also obtained from 
solution: 

ZA = i Z c l~'o (3) (~, r ' ) / ~ { ~ )  

r -~d 

Schelkunoff 's mode 

( 4 3 )  

The form of  the current distribution in Eq. (40) can be exploited to cast Eq.(39) into the 

following useful equation, in the fashion of  Ref. 1. 

a ~,. = rr 2 ' ~ ( e  + 1) k 2 
o 

1 o 1 d ") dr  x I o Qo, r') + m ,~  (kr') ~/1~ (kr " 
k 2 d r ,2  k 2 dr" dr" 

o o 

(44) 

*Because of the choice of outgoing boundary conditions in Ref. 6, ~'~e+ l(kd) appears in the complementary 
current modes, and there is no distinction between k and k o. 
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where 
3 

~'o(Ca, r ')  = ~. T(i)(co, r ") 
i=1 

Note that only odd e multipoles occur because of the symmetry of the bicone. Insertion of 
the three current modes stated in Eq. (39) into Eq. (46) yields (as k6--0) 

~ J  2e+ 1 1  1- (-1)g I Pg(cosOc ) k 2 ae = ' Zo fo (c~) ~ (kd)  zr 2 E(,~- 1) ~ e 
Q 

I Zsp ~ ~ t 1( k d) 
• 1 - i  - -  iml 4 n + 3  2n+ Jn, g 

Zc n=o (n+ 1) (2n+ 1) , ~ ( k d )  (45) 

where 
d 

Jn, l~ - k o f  I02n+l(kor ')~g(kr ')---~-k ~b2n+l(k°r') '" ] k .W e (k r') dr" 
o 

The remaining integral can be evaluated by using the properties of the Ricatti-Bessel 
functions and Bessel function integrals and recursion relations stated in Ref. 5. After much 
tedious mathematical manipulation, we find 

2(n+ |) i 2n+ 1 / k 2  / ~ d  ° 
J . , t -  2n+g-2  i 2n+1-£  ~-.~-1o k° 

\ 

~g (kr') ~2n + 1 (ko r ')  dr" 

- ( [~-  1) ~ £  (kd)  
~92n+ I (kod) 

k d 
o 

N 

2 n + l - g  2 ( n - 1 )  "6g(kd)'~2n+2(k°d)-(2n+l)k~g+l(kd)~2n+l(k°d)o 

(46) 

Assuming that ](k2/k2o) - II < < I, we obtain the final form for the.source multipole 
coefficients of an uncapped biconical antenna: 

J 2g + 1 .1 - (~1) [~ P[~ (cos 0 e ) k 2 
ag = ~: Z o ~  fo(~ ) ~E(kd) l+i.X_£(k, ko, d ) 

k 2 
o 

(47) 
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where Xt,(k, ko, d) is denoted the "complementary antenna function" and is defined, in 
accordance with Eq. (46), as 

X["(k '  k n ' d ) =  ~ E 1. n - 3  ~ ' / ( k d )  ( g ,  1.) ~b2n- 1 (k 'd)  
r tZi  n=o 2 (n+  I)-I ~' [k, d) 

2no 1 - [ '  

I ~'(~.. l) k ~F.- l (kd) 1 } 2 ( n ,  1) .~2n ~ 2 (kod) - (2n ..- l)  ko ~ , ( k d )  ~2n - 1 (kod) J 
(48) 

It is interesting to note from Eq. (47) that the contribution of the complementary current 
modes to the source multipoles.is out of phase with the contribution of the primary mode. 

Since these equations are closed-form expressions, their evaluation permits a check on the 
source coefficients obtained from the numerical solutions of the more general capped bicone 

integrodifferentiai equations derived in the next section. 

3.2.2 Derivation of the Coupled lntegrodifferential Equations for the 
Current Distribution on a Capped Biconical Antenna Radiating 
into an Unbounded Medium 

The presence of  caps on the bicone complicates the treatment of the last section. In this 

section, the equations describing the radial current distribution in the conical sections of the 

antenna and the expanding and contracting current circles in the end caps are derived by 
treating the antenna as a boundary value problem and using a gauge transformation to treat 
the singularities which occur in Eq. (39) when the observation and source points coincide 
(f~--~'). Using this transformation introduces the effect of an accumulation of  fluctuating 
charge near the antenna tips. Conservation of current (Kirchoff's law) at the cone-cap 

juncture prevents charge accumulation at the caps. 

The boundary value problem is posed by requiring the tangential electric fields on the 
antenna surfaces to vanish, assuming that the surfaces are perfect conductors. Referring to 

Fig. 2, we can see that the vanishing of the electric field on the conical parts of the antenna is 

expressed by 

0 x F ,  = i ~ E ¢ -  .~E r = -~ ' l ' ~  r = 0 a t 0 = 0  e a n d • - 0  c, and f o r $  < r  < d, 

at 0 = 0¢ and a- - 0c, and for 6 - r - d, where 2~ cos 0c is the axial separation distance 

between the cones. The azimuthal field, E~, vanishes by symmetry. The radial field, Er, 
contains contributions from both the cones and the end caps. 
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Similarly, the tangential field on the end caps is given by 

; × -- SZp- h% -- 

where 0, 0, and ~ are cylindrical coordinates describing the antenna, and the tangential field 

is evaluated at z = +_ h for o ___ 0 --- 0o. This field also contains contributions from sources 
on both the cones and end caps. 

The solution of the first part of Eq. (6) is obtained by using properly selected singular 

Green's functions. Caution is required, however, because of the gradient of  the divergence 
of the current density in the first part of Eq. (6). If this term appears inside the source 

integral, as in Eq. (39), there results a non-integrable singularity (Ref. 7) when observation 
and source points coincide; consequently, the treatment of Section 3.2.0 cannot be used to 
describe the fields on the antenna surface.* We shall instead transform the field in such a 

way that the divergence of the current density appears inside the integral and the gradient 
appears outside (as in Ref. 7). Such a transformation is equivalent to the specification of the 
gauge condition for the conventional vector and scalar potentials. 

Let the transformation be 

E = U+V~b (49) 

and choose ~b = (V .  U)/k2; then the appropriate Helmholtz equation is 

V2[l+ k2Ll = -41ri ~---- 
C2 o 

(50) 

with the formal solution 

13 = i ~ k  f f f - J o  (r ' )  G (r, r ' )  d3 r"  (51) 
V" 

where Z is the wave impedance defined in Eq. (12) and 

G(r,  ~" ") = 
elk] r -  r" I 

4rtJ r -  r'J 

*The author acknowledges Dr. C. M. Butler of the University of Mississippi for bringing this point to his 
attention. Dr. Butler also supplied a derivation of the coupled integral differential equations based on vector and 
scalar potentials. 
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is a Green's function which has an integrable singularity at ~ = "~', and ~ '  and-~ are, 

respectively, vectors from the origin to a current element and to the observation point 
(r, O, @). 

It is convenient, at this point, to state the radial unit vector of  a source point in terms of  

the coordinates of  the observation point for both spherical and cylindrical coordinate 

systems (see Fig. 2). For a source point on the surface of  either cone, we find 

and 

^ 

" "~" = ~ sin O ' c o s ( @ -  @') + z cos  0 " -  ~ sin (@ - @')  sin O" (52) 

[ "  = ? [ s i n O ' s i n  O c o s ( @ - @ ' ) + c o s  O ' c o s O ]  

1- O[s in  O ' c o s  0 c o s ( @ -  @') - cos  O"sin  O] - ¢~ sin 0" s in ( @ -  @') 

with 0"= 0 c, - - 0  c 

Similarly, for a source point on the surface o f  either end cap, we find 

(53) 

~" = ~ cos(@ - @') - g s~n(@ - @') (54) 

and 

with 

~" = ~ s~.  0 cos(@ - ¢ ' )  + d cos  0 ~os(@ - @') - g sin(@ - @ 3  

z ' =  _+h 

(55) 

These projections will be used to determine the magnitude of  the vector, r - '~", from source 

point to observation point for four specific cases and the associated Green's functions. 

The Green's function for current elements and observation point both on the conical 

surfaces is now stated as 
ik l l  

I 

G b c ( r , r "  / = " 
4 n R  

I 

with 

R 1 = ~ _ ~ r  2 + r "2 - 2 r r ' E s i n  0 sin 0" c o s ( ~ -  @') + cos 6 cos 0"]  

0"~ 0c" ~ - 0c 

(56) 
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The Green's function for current elements on the end caps and observation point on the 

conical surfaces is 
ik R 2 

Gc2p (-~, r ") = e 
4it R 2 

with 

R 2 = L ~ r  2+  z ' 2 + p ' 2 - 2 r ( s i n  O p ' c o s ( ~ - ~ b ' ) +  z ' c o s  O) (57)., 

z - , + h  

The Green's function for current elements and observation point both on the end caps is 

~k Pl 
e 

4~rp 1 

with 

Pl  = + z 2 + p ' 2 + z ' 2 - 2  p" - 

z - . + h  

Finally, the Green's function for current elements on the conical surfaces and observation 

point on the end caps is 

i k p  2 

P2 

with 

P2 = ~.~._p2 + z 2 ÷ r , 2 _  2r -Es in  O'p cos ( .&-  ~ ' ) ÷  z cos  0"] 

0"-,  0 c, tr - 0 c 

(59) 

Having constructed the Green's function for the four cases of  interest, we may now 

determine the current flowing in the conical surfaces and in the end caps. The conical source 

is a loop of  current flowing in the (outward or inward) radial direction whose magnitude is 
given by 

~ ,  ~o c ~ ,) The ( r "  ) = 2 ~ . s i n 0 c t b c r  • (r  (60) 
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where tbc is the thickness of  the very thin surface layer in which current flow occurs. In 
obtaining Eq. (43), we have used the approximation that 

f01 
c + ( A 0 7 2 )  . tbc 

s i n  0 " d 0 "  = s i n  0 c - - ~  

- ( A 0 72) 

with 
the 

A 0 " = - -  
r 

The volume element is, similarly, reduced to 
i 

d3r" = r'tbcsinO c{8(O'-Oc),B[O'-(n-Oc) ] } dO'dq6"dr" 

Allowing for the phase difference between currents flowing in the two cones, we obtain, 

finally, 
"N 

J b C ( r " ) d 3 r "  = o  ~"~bc (r') {~(O'-Oc)--~[O'-(tt-Oc)]} dr'dO'de~" (61) 

By analogous reasoning, we find the cap current density volume element product to he 

=Cp(r')d3r'Jo = ~'Iop(P) [8 (z ' -h ) -8(z '+h) ]dp 'dz"  d@.__~'2,, (62) 

with 

Icp(P=O) = 0 

The contribution of both cone currents and cap currents to the auxiliary function U, 

evaluated near a cone, is found [from Eqs. (51), (61), and (62)] to be 

Ubc i~k  ~'Ibc (r') 1+ (r, r, ~') - X ~- (F', r; ~') dr" d~" = be 2 n 

f2~ foP°  (p,)[X 2. = • X2p 4';', P''~'-= } (63) o. ( , ,  p _ d 

;-I- v 0 
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where 

1 (7, "6") 
X b  c r , 

(?, ; ' )  8(0"- 0c), 8(0"-(~,-  0 c ) ) ]  dO" 

and 

f+ 
+ [ h + ( t o p / 2 )  l 

2 _+ (?, p; ~.) __ G~p (;,  ; ") 

X c P  [ h - ( t cp /2) ]  
ES(Z ' -  h ) ,  ~'~(Z'+ h ) ]  d Z "  

where tcp is the thickness of the current-carrying layer in the end cap surfaces. 

Similarly, the form of U evaluated near a cap is 

where 

a n d  

; ' [ b c ( r ' )  X h 2 e + ( r , r . ~ ' ) - X , ~ -  ( ~ ' , r ; ¢  ") d r "  - -  
2w 

2 ±  ~ • 
Xb c (r, r,~b') - 

A0" 

f 0  0c +- ' f -  
A0" 

c 2 

GL Or, ;'~ 8(0"- 0e), 8 ( 0 " - ( ~ -  0 c ) ) ]  dO" 

l + ( r ,  p . ~ "  ) - Xcp 

c p  

f± 
± h+-~- -  

h t c p  

2 

G~p C;. ;')[ ~CZ'- h), ~CZ'+ h~] dO" 

(64) 

(64a) 

(64b) 

In forming the divergences of these functions, we note that the gradient operates, initially, 
only on the unprimed coordinates in the Green's functions. Thus, the divergences have the 

0 
• form 
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V . U  -'f/"L' i z  T(n') fi'. V X-+ ( r ,  n,  ~ ' )  dn "dt~----~" 
2it 

2,'7 ~,b + 

_If_ o J a  an" ' 2 ~r 

where 5 '  is the unit vector in the direction of current flow and n '  
coordinate. 

(65) 

is the associated 

The latter form can be integrated by parts, yielding 

~ r - -  ~ .  a ~ , ] [ ' - - , ,  ~ , ,  
V .U '=  i Z k ( l ( n ' ) J o  Z ( £ .  n .~) ' ) - -2 .  " a - - -  al(.') J~o r' d~" ,} a,," X: (~', n', ,~') --2~ dn 

(66) 

In an ordinary boundary value problem, the Green's function would normally be defined so 
as to assure vanishing of integrated parts containing either the current (Dirichlet boundary 
conditions) or its normal derivative (Neumann boundary conditions) on the surface 

enclosing the source elements. In this case, however, the boundary conditions which must be 
satisfied are the vanishing of the tangential fields at the surfaces and the Kirchoff's law for 

continuity of  current at the cone-cap junctures. The latter is stated as 

Top (Pc) +I'bc (d) = 0 (67) 

Since it can be shown that x2g (r, 0o, $ ' )  = X~(r ,  d, ~ ' ) ,  one can write the divergence of 
the auxiliary function near the conical surfaces [incorporating Eq. (67) into Eq. (66)] as 

v • Ub~ ( ; ' )  = - ~ k  ~ (~) ×~'~,o (; ' , a, ~,'). _ ×~,~ (~,, ~, ~,). d~'2~ 

fo 2+(r,f, 2- ~ , 
+ o~ P, Xcp - Xcp ( r ,  p , ~ "  d~b_...~'2= do" 

f ~  aTb~(r ") 
4- a r "  

£2rrIx1- X1- I d~." (llr , } 
bc (r,  r ;  ~ ' ) -  ( r ,  r ;  ~b') 2n 

(68) 
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Again, through an analogous reasoning process, we obtain 

f""[ ] V • Uep ( r )  --- - i Z k  (8) Xb 9+ ( r ,  8, ~ ' )  - Xbe2- ( r ,  ~ ,5, ~ ' )  '---:--deS" 
- - o  2 f f  

fpo a~o (p'l fo :-r×,.(~.,p,,~,~_×,_(;,P.~,)] d~." a~" 
- o ap" L cp ~p 2rr 

- a~" L be r , r ' , ~ ' ) - X b 2 c " ( F , r ' , d  ~') dc5" dr" 
2~r 

(69) 

These divergences act as scalar potentials, as can be seen from Eq. (49). 

The final expressions for the tangential fields are obtained from Eqs. (49), (63), (64), 

(68), and (69), using the following cross products: 

0 × ~ "  = --.~ [ s in  O ' s i n O c o s ( . 6 - ~ d ~ ' ) +  cos O ' c o s O ] - ~  s i n O ' s i n ( ~ b -  .~')  

~×~"  

Z X.~' '  

= --.~ sin 0 cos (~b- & ' )  - ~ sin (~b- cb') 

O ; 0 
= - ~  ar r .~in O a~ 

= .~ s~n O" ~os (q, - ~ ' )  + ~ s~n O" s~, (,/, - ~') 

^ __a .  # a (70)  z×V = g ap p aa 

which were obtained from Eqs. (35) through (38). When Eq. (70) is used to obtain the 

tangential field components from Eqs. (49), (63), (64), (68), and (69), the terms proportional 

to sin (6 - 6 ' )  do not survive integration, since these are odd terms, whereas all other terms 

in the integrands having the form of  Eq. (70) are even terms. In addition, the aximuthal 

derivatives vanish by symmetry. Thus, the tangential electric fields are purely azimuthal, 

both near the cones and near the caps. 
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It is convenient to introduce three classes of  kernel functions defined as follows: 

9/'/" 

X (;', n')= f 
o 

t C r ,  n ' )  = 

C× + (;', . .  6 ") - × -  (;% . .  ~-)]  dC,-- 
2rr 

2 ~  

f o  cos d~" iX + (r, n. d~')- X'-(r, n. ~')] d~_..[ 
• ' 2rt 

2ff 

o 2w 

We state the final field equations, in terms of  these functions, noting that cylindrical 
symmetry permits ~'  to be set equal to zero and with the order of  integration interchanged. 

x Ebc = - i ~ Z k  sinOcsinO Ibc (r')~le(~' ,r  dr'~-cos Oc cos e |bc (r ' )~ l ( r ' r ' )dr"  

+sin 0 c ~cp (O') •c2p(r' p')do'- c(8)~r r Xle(r' 8) 

and 

a g d dlbc (r') ~ J'Po dI"~p (p') 

^ 

x PSbc = Z 

• ~c2p(r,p')dp'l } 

(72) 

i ~Z 'k  sinO e Tbc(r')~2 c (r ,r ' )dr '*  l ep (P') cp dp" 

IT  b ~ d  disc (r', - c (~) ~0 ~K~c(r, 8)+ dr" X~c(r'r ') dr" 

O f p o  dl'~p(p') ] } + ] 
Op Jo dp" X~p ( , ,  p') dp" (73) 

The coupled integrodifferential equations for the currents, Ibo on the cones and Icp on the 
caps, are obtained by setting Eqs. (72) and (73) equal to zero in the limits 0 - 0c, I- - 0c, and 

z -- ± h. The results are stated as follows: 
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o = 

and 

d d 
sin20cf 8 l'bc(r')~blc(r,r')dr'+coS20cCOSOfB ~bc( r ' )~ I I ( r , r ' )d r"  

" o  ~ . [ T b  + sin 0 c Icp (p') K 2 (r,  p') alp'- (8) 0 ~ c  (~'' 8) cp c ~ ' r  

a(~ d dI'~c (r') ) ~r (~oPO d~cp(P ") )] 
+ ~'r dr" XI c ( r , r ' ) &  + ~(2p(r ,p,)dp,  

dp" 

~8d~, pPo~ cp ( , P ") dp" slnO c l h c ( r ' ) ~ 2 c ( r ' , r ' ) d r ' + J o  ic p (p , )~ l  r 

- (8) J(bc 8)  

(74) 

d~ " Op XJo dp" 
(75) 

In using these equations, note that ?~ = (~Q) + (2 z), in order to evaluate terms in 8/80. .  

There are several options for solving these equations. Conventionally, the method of 
moments (Ref. 8) can be used to reduce the equations to a system of algebraic equations, 
provided that the singularities in the kernels X, ~, and ~i can be isolated. This method 
involves establishing a computational mesh on both the cone surfaces and on the end caps. 
The currents are expanded in a series of functions chosen for computational convenience 
and defined within each interval of  the mesh. Weighting functions (known as testing 
functions) are similarly chosen, and the expanded Eqs. (74) and (75) are premultiplied by 
these functions. Integrating the resulting equations over the finite elements of the 
computational mesh then yields algebraic relations for the current expansion coefficients 
which can be solved by matrix methods. A large body of literature exists that centers on this 
method and the properties of various expansion and testing functions (in the context of 
specific functions) (e.g., Refs. 9 through 11). When the expansion and testing functions are 
the same, the procedure is known as Galerkin's method (e.g., Ref. 12). In view of the 
physical significance of sinusoidal currents demonstrated in Section 3.2.1, it is appealing to 
use piecewise sinusoidal functions as either or both expansion or testing functions, provided 
that the resulting integrals are evaluable. It should be noted, however, that simpler functions 
have been found useful (Ref. 10), although a finer mesh may be required. Further discussion 
of the method of moments is beyond the scope of this report. It may be possible to devise a 
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simpler scheme to solve Eqs. (74) and (75). Regardless of how the solution is effected, the 
resultant current distribution must then be inserted into Eq. (39) to obtain the source 
multipole coefficients for the biconical antenna. If the method of moments is used, then, 
obviously, the expansion functions should be chosen with ease of integration of Eq. (39) in 

mind. 

3.3 FORMULATION OF THE CAVITY BOUNDARY VALUE PROBLEM 

In this section the multipole expansion for the Hertz-Debye potentials is obtained for all 
regions of the spherical cavity external to the source. For simplicity, the surface of  the sphere 
is assumed to be much thicker than its skin depth at all frequencies of  interest. The multipole 
coefficients in each region of the cavity (see Figs. 3 and 5) are then obtained by applying the 
boundary conditions stated in Eq. (29) to the potential expansion shown in Eq. (32). We 
illustrate the procedure by deriving the multipole coefficients, first, for an empty sphere and 
comparing our results, in the limit of a Hertzian dipole source, with those of Ref. 13. After 
this discussion, the matrix formulation for N dampers is presented, and the results for one 
and two dampers are derived in detail. Throughout this section the full expansion 
corresponding to an arbitrary source distribution [Eqs. (37) and (38)] will be retained, rather 
than assuming source axisymmetry. The following notation convention will be employed: 

1. Capital English letters denote coefficients of standing waves (Ricatti-Bessel 

functions with real arguments). 

2 .  Lower-case English letters denote coefficients of outwardly propagating (plus 
left superscript) or inwardly propagating (minus left superscript) undamped 
spherical waves (Ricatti-Hiinkel functions of the first and second kind, 

respectively, with real arguments). 

. Greek letters denote coefficients of outwardly propagating (plus left superscript) 
or inwardly propagating (minus left superscript) damped spherical waves 

(Ricatti-Hankel functions with complex arguments). 

To illustrate this convention, in reference to Fig. 3, the multipole coefficients for the 
single damper configuration are related to the corresponding spatial regions as follows: 

a. Source region - al~', b~" 

b. Region I - between source and damper - A~ n, B~ n 

c. Region I1 - damper - ±ol}~, ±B~ 
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d. Region III - between damper and surface - E~, M~ n ; - e ~ ,  -m[" 

e. Surface region- +~f,  +8~ 

Noie that the first of each pair of coefficients denotes the TM wave multipole coefficient 

and the second denotes the TE wave multipole coefficient. We shall return to the single 

damper problem later, but now we shall consider the empty cavity problem to illustrate the 
formulation and solution of the boundary value problem relating all other multipole 
coefficients to the source multipoles a~ n and b~ n, whose relationships to the source current 

distribution have been stated in Eqs. (37) and (38). 

3.3.1 Muitipole Expansion Coefficients for an Empty Cavity 

From Eqs. (29) and (30) we obtain ~he relations between inerior and exterior solutions* 

for the TM waves in a cavity containing a nondissipative medium: 

and 

4ffO'i l ]  4/TGi ) (76) 1 + - -  + 
fCO ~(0 s 

where the subscript " s "  denotes surface, Cfs = koR,/3s = ks/ko, and the ratio of interior and 

surface impedances is Z/Z., = /~s (~/~,s), with 

_aJ IZ s ~ s  I '- 1 + i 
C (s 03 ~s 

The corresponding equations for TE waves are 

and 
(77) 

*Henceforth, primes denote differentiation of a function with respect to its argument. 
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Eliminating the surface multipole coefficients, +7~ and + ~ ,  from these equations 
produces the cavity multipole coefficients (i.e., the coefficients of standing waves in the 
cavity) for both the TM and TE waves 

and 

.1 = .1 . . . . . . . . . . . .  ( 7 8 )  
A E a~. 

P's c. 

m m ( 7 9 )  
B[ = b E , # , 

These standing wave coefficients have an obvious similarity to the well known Mie- 
scattering coefficients--except that here the problem is one of an empty cavity surrounded 
by an electrically infinite, absorbing medium, whereas the usual Mie-scattering problem is 
one of an absorbing and dispersive sphere embedded inca nonabsorptive medium. These 
coefficients are now used to obtain the cavity fields for comparison with an earlier analysis. 

In an early study, Butler and Van Bladel (Ref. 13) obtained the fields inside a dipole- 
excited hollow sphere embedded in an infinite dielectric medium. To compare our results 
with theirs, we form the ratio of the tangential electric and magnetic fields at the inner 
surface of the sphere: 

s 
E 0 ksC (~2n~"E / 0rifle ) , 
H--~ = i~'sa~ Oa O0 O0 ' s (80) 

since the azimuthal derivatives in Eqs. (27) and (28) vanish because of  axisymmetry. For a 
small dipole, ]kdl < < l, only the first multipole is important, and, using 

we obtain 

where 

E 1 
h l(a~)+a hl (o) EO _ iC ~ 

H ~  ~ co I~ h ~ (%) 1 

~s = e s (  1 4~r°i)seoJ " (81) 

35 



A E DC-TR-80-58 

This is the result obtained by Butler and Van Bladel (Ref. 13). Note that our choice of the 

sign of w [from Eq. (5)] dictates the use of h~(as) for correct outgoing boundary conditions, 

whereas Butler and Van Bladel use the opposite sign for ~ and, hence h~c~s) for outgoing 
waves. Also, our use of  Gaussian units introduces a factor C into Eq. (81), in contrast to 
Butler and Van Bladel's form of Eq. (83). 

3.3.2 Matrix Formulation for the multipole Coefficients for the 

Multipole Coefficients in a Cavity Containing N Dampers 

The most systematic way of incorporating the boundary conditions stated in Eq. (29) 
into the boundary value problem for a cavity containing several dampers is to use matrix 
procedures. Let us define the source column vectors, whose dimensions are 2(2N + 1), Y__.E 
and Y__M, as vectors whose first elements are proportional to ap and bp, respectively, and 
whose remaining elements are all zero. The column vectors for the unknown multipole 

coefficientsare denoted, accordingly, as ._X~ and _XM. These vectors are obtained by 
inversion of the matrix equations 

• ME Xg = Ygand  MM XM = YM (82) 
-w 

where the matrices M E and M M are interface matrices for TM and TE waves, respectively. In 
accordance with the notation given in Section 3.3, the vectors of unknown multipole 

coefficients have the following form: 

X~" /[',m + m - m 4-cm -c m + m - m ,-cm -cm 
: l ~ ' ,  ~, a l , ~ ,  a l , g ,  l , e '  1,g' a2 ,g '  a2 , f '  2 , f '  2,1~ 

I+am -am , -era -y~)  \ 

,...) 

/F /~3  'n, '~ 3m o -~m ,,, +dm n -din + m -~3m 4din 
XM = g l ,~ '  t,r. t,r." t ,~ '  /g2,~" 2.~' 2,~ 

t /-t-Rm -Rm _mm M m -I ~t~) 
~ r"N,[, '  r "N,g '  It . . . .  ~., 

where X__ T denotes transpose of the vector. 

-dm 
' 2,g' ...) 

(83) 
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It should he recalled that there are 2 x (2N + I) elements in each of  these vectors. The form 
of the interface matrices is shown, schematically, in Fig. 4. For TM waves, the rectangular 
submatrices in the interface matrix have the following form: 

~ D ~ - - -  ¢,e(a o) 

M K 
D. J 

°,_,_ 2) \ 
-¢;'(~Dja2j-2)- ~-~'(~Dj'2j-2) 

M~t = 
] 

/ ( ) , ( ) - ~D ~ ~'~ a2 j_  I - ~Dj - -  ~ a2j_  l 
J fD3 ~D 

J 

- p2j  ~ . . ~  ~ !  pD1 a2 j _ ] _ ~2  f'D. IzD 
~'D ~D. J 

j J j J 

J ~-D. J e D P- 
J j 

___ ../E_ ~ a2 j ~Dj ~-D. ~D P~, ~D "~- " 

J | J J 

/ -/3DN--L ~ -' ("2N) 
t" DN ~. 

-~ ~ ~-¢~(°~) 
N t" DN ~DN 

(84a) 

\ 

\ ~  ~ ~-¢~(o~+,) 
~s //s 

(84b) 

- ~  (°~,) 
N 

2~__~ ,( ) 
- /~ON--  Po ~e ~2N 

DN N 

\ 

~'~ # s  + (84d) 

37 



A EDC-TR-80-58 

/ -~ (~ o,N + ~) / 
(84e) 

where 

and 

~ 0  = ko ['a 

a I = kor b 

m oe 

a2N+ 1 = k oR = a s 

kD, 
p Dj k 

o 

MO [ 

MDI 

Zeroes 

Figure 4. 

Zeroes 

Mint1 \ 
\ 

MD2 \ \  
\ \  

\ \  
\ \ 

\ 
\ 

MintN_ 1 

MD N 

MOX 

Block form of N damper interface matrix for either 
TM or TE waves. 

I Ms 
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Note that the intervening medium is not required to be free space but only nondissipative. 

The submatrices for TE waves are stated below: 

lvl. u Int. = ] 

M~ 

MM. 
l 

/~IDi ~ (ao) 1 Mo M : I ~'~ 
\ .  +~<<,o> 

/~'l~(13Dja2j-2)- ~'~<t~iDjalj-l)k 
-<~'(~iDj"72j-2)- ~'<lSDja2i-2 ) 
~'1~ (18Dja2i-1)<~(~iDja2j- 1) 

t <~'(~lDja2j-1) ~'~'(i{IDja2j-1) i 
/-/3D, ---~'-~" FDj ~( a2j- 1) -/~D'--~, 'Dj ~(a2j-1) 

1 t 

-~f (a2j- 1) - ~'la2j_ i) 

~Dj g ~ (a2j) ~Dj ~t 
+ 1  # D j + I  ' + 1  ~Dj+I 

\ 
/ - " D  ± <~(o~.~) N ilID N 

<~'(o~) 

\ 

~:(o,,) 

~'v N 

t 
X 

(85a) 

(85b) 

(85c) 

(S5d) 
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,)/ (85e) 

The modular nature of the interface matrices M_.._ E and M____ .~ is clearly demonstrated in Fig. 
4. An empty cavity is represented by the submatrices Mo, Mex, and Ms. For one damper the 
interface matrices are built up from Mo, Mot, Mex, and Ms. A cavity containing two 
dampers is represented by the combination Mo, MDI, Mint I, Mex, and Ms. A three-damper 
cavity is represented by Mo, MDt, Mintl, MD 2, Mint 2, MD 3, Mex, and Ms, etc. Thus a damper 
can be added to or subtracted from the computational scheme merely by adding or 
subtracting a damper submatdx MD i and a submatrix Mintj, corresponding to the 
intermediate region between the " j th"  damper and the "j  + lth" damper. 

In practice, the surface conductivity is sufficiently high that the asymptotic approxima- 
tions, 

and 

~. (flsas) =" el~[k.~ k - n / 2 ( f + l ) l l .  . [with k.,, = ( l  ~ i ) / ( 8~ )1  

can be used to simplify the corresponding elements in Eqs. (84e) and (85e). No such 
simplification can be applied to the remaining matrix elements, since oL, = 2.74 corresponds 
to the 'primary TM mode of any spherical cavity. Nevertheless, these matrix elements can be 
stably computed by using standard, downward recursion algorithms with less memory 
requirement than the current AEDC Mie-scattering codes require. 

It is apparent that the interface matrices are sparse, tetra-dia.gonal matrices. While the 
innermost two diagonals contain exclusively nonzero elements, the outermost two contain 
alternating zero and nonzero elements. This structure can be used advantageously to devise 
efficient inversion algorithms to solve Eq. (81). 

There are three significant advantages to using a matrix approach to solve the boundary 
value problem instead of using the direct solutions presented in the next section: (1) Because 
of the modular nature of the matrix, the number of dampers considered can be altered by 
merely adding or deleting blocks in the interface matrix, as explained earlier. (2) Less 
computational difficulty (and less program complexity) should result from computing the 
spherical functions used in Eqs. (84) and (85) (once, for each frequency of interest) and 
numerically inverting Eq. (82) to obtain the desired multipole coefficients (instead of using 
the complicated combinations of these functions appearing in the next section). (3) If only 
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the frequency response of the source-cavity system (hence, the frequency dependence of the 
antenna impedance) is desired, rather than the electric and magnetic field distributions in the 
cavity, then only the standing wave coefficients A~ n and B~ need be computed. (Only A~' 
need be computed for an axisymmetric source.) The direct solution procedure, in effect, 

requires that all other multipole coefficients be computed in the process of determination of 
A~ n and B~. Of course the matrix procedu~'e is capable of simultaneously determining all 
other multipole coefficients, but they need not be computed, unless desired. 

3.3.2.1 M u l t i p o l e  C o e f f i c i e n t s  f o r  a Cavity Containing a Single Damper 

To illustrate the direct solution procedure, let us solve the single damper problem 
explicitly. The equations that relate the interior, damped, and exterior solutions are 
~malogous to Eq. (75) and are stated below for TM waves: 

] 
I m  1" " 1 " - m  ~ a[/ ~ (Oo)+ A T ~[/Cao) = +am a,,) ~ ¢~'f  

/3D~ 

~'D'D [ + a ~  t a ) ]  = - m " m 

£s 

~'s ~ " ' ° 

The simplest way to solve these equations is to work backward from the surface, obtaining 
each TM wave multipole coefficient in terms of the coefficient in the immediately exterior, 
adjacent region. This very cumbersome procedure yields the following equations [using the 

asymptotic forms of ~'~ ~sas) and ~'e" 03sas)]: 
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m y~ = 

2ia~ ~D -p-- c - i  s R - 2  
/tn 

P~ 

~D DIll - CIII 

"(J~D a,)] 
(87a) 

(87b) 

- '  
2 ~D t~D 

+ a  m 

D l l ~ f ( a o ) - ~ D  ~ CII~i  (a o) (87d) 

- -  m 

al,  P = 

-i a~ [~D ~ DIll '~ (~D al)-CIII '~'(~D al)] 

(8'7e) 

A~ = [D ' ' ' (ao ' ]  (870 II ~ ( a ° ) - ~ D  TD ClI 't//f/ 

The coefficients with Roman subscripts in Eq. (87) are not constants but are the auxiliary 

functions stated below: 

CII I = 

ga 

Dii I = 
Cll I 

Oa I 
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Cl I = " ]I 
D ~D DIll ~ ~D nl - CII| ~2" (~D ''' 

Dn = a c .  (88) 
a PD % 

(Note that the Roman subscripts correspond to regions in Fig. 3.) The inconvenience of 
using these direct solutions, in contrast to the apparent simplicity of the numerical inversion 
procedure advocated in the previous section, is annoyingly obvious! 

The TE wave multipoic coefficients for the single-damper configuration are obtained in a 
similar fashion and are stated below: 

+a~' -- 

[ - ] m p2 - i  k a a-~(e+l) 
e 2 i b  e ~ , B e  p,~o 

~,,-"-- (~,i, - ~,,,, i ' .  ~, (,,.)] [gill ~ '71) ~D ~'(~D " , ) ]  (89a) 

My= 

- m  m 

[,,,, ~ (,,o .,)-,,° ,o~ ,,,, ~ 0°  °,)] [,,~. ~,. ~.,,o.~ - ~.,,°.~ ] 

(89b) 

(89c) 

-[- m 

~1,[~ (89d) 
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-o, e-- 
P ["D ~'~'-D gIlO,(ao)-fllO~(ao ,] [gill ~("D al)-"D ~'~D 'III ~("D al)] 

.[ B~ = bl~ 

(890 

(89f) 

The associated auxiliary functions are the following: 

f I I I =  

gi l l  = 

{I1 -- 

Of m 

0-, 1 

-/3 D VD 

~, ~ ¢'~ (,,,) - 0 i (",) 

0 fll (9O) 
gl l  - 0 ~  D ao 

Since most treatments o f  damping grids assume that the grids are infinitely thin surfaces 

across which the tangential magnetic field is discontinuous (with this discontinuity 

proportional to the surface current), it is important to determine when the finite width of  the 

dampers must be considered. Let the damper width be D = rb - ra. Now, simplified shifted 

argument expansions o f  the Ricatti-H~/nkel functions and their derivatives can be stated 
(Ref. 5) as 

2  oo,)2 
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where ot D ---- (X l - Ol o ---- kD, and analogous relations can be derived for the Ricatti-Bessel 
functions. Equation (91) relates the damped spherical waves at the inner damper radius to 
those at the outer damper radius. After some manipulation involving the Wronkskian, W[J'~ 
(/~vOq), ~-2 (/~VCtl] (see Ref. 5), we find that, in order to ignore the finite width of the damper 
in the computation of Cn and Dr[, the following inequalities must he simultaneously 
satisfied: 

C]l l  
and --gD aD 

g 
f(g+t) ] 

(flD a l )  2 1 << 

DII._.._~ I 

Cnl 

Thus, 

( k D D ) 2  = ( f l D a D ) 2  < <  I~(~.+ l )  _ .  I 
(f lO a l  )2 

-1 

(92) 

For the lower-order multipoles, Eq. (92) simply states that the finite width of the damper can 
be ignored if it is much less than XD/27r where XD is the wavelength of the TM wave in the 
damper. The higher-order (f > 1) multipoles, however, contribute to the high frequency 
response of the system because Bessel functions peak at values of their arguments which are 
comparable to their order. To understand the significance of Eq. (92), we consider a case 
where the damper impedance is l/V~times that of the intervening medium and the damper 
is located at half the chamber radius: Then, tx I = 0.7 % t,j, where ~(tXs t,j) = 0 corresponds 
to the TM eigenmocle of fth order and jth degeneracy. Consider the case of f = 3, since even- 
order multipoles vanish for a source with axisymmetry. Then, as 3.t -= 1.5 % t,i; thus, Eq. 
(92) becomes 

]2 I or D < < 0.4 
D2 < < \ 2~ r /  (1.3)2 2rr  

The finite width of the damper is more significant when the chamber resonance is of a high 
order and the damper is near the center of the chamber. 

if desired, the preceding Eqs. (86) through (89) can be simplified by retention of only 
first-order terms in the damper width. The auxiliary functions, Clx and Dn, reduce to 

Ci] = 2i  I _/32 ~__8__ a )J 
CIII gD l) Dl l [  

f lD tt D Dil l  

,, v,,, q I c'I' DII = 2 i 

t 

(88a) 
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with similar reductions for fn and gll. Equations (87d) through (87f) are then evaluated with 
O~o replaced by Otl and using Eq. (88a) for CII and DII. Obviously, an analogous procedure 
can be applied to Eqs. (89d) through (89f). 

Simplifications such as Eq. (91) can also be applied to the submatrices in Eqs. (84) and 
(85). These approximations offer the obvious advantage of reducing the number of spherical 
functions to be computed. In addition, they isolate the small parameter, cxo, in case special 
precautions must be taken in the inversion procedure to avoid loss of significant digits 
accuracy. 

3.3.2.2 Muitipole Coefficients for a Cavity Containing Two Dampers. 

The TM wave multipole expansion coefficients (using the notation convention of Section 
3.3) for the two-damper cavity in Fig. 5 are given below (assuming, for simplicity, that the 
electrical properties of both dampers are the same): 

Figure 5. Geometry for electromagnetic wave propagation in an internally 
excited hollow sphere containing two concentric damping regions, 
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. , I -  I r l  zf = 
8i 

[ ,, ~] 
I D gD an~ e 2 
I 

[i:~s.~_ Wi (as)_ iW,(a )] [~D .J.%__ DV ~ (~D a.~)_ CV¢~'(~D a3)] [ ~D_~ - ~2" (a2)] [~D...~.. (ii~ D )_ CII, ,t "1) 'D CIV ' Ca2)- DIv~"~ 'D DII'~ al ~"~'(I~D al)] [~D _e_ c. W~ {a) - n. We (%)] 
PD i 

(93a) 

,z DV ~'~ (~D a3) _ CV ¢~'(~D a3)] [ ~D_~D CIV ¢ ~ (a2)_ DIV ¢~(a2)] [~D /ZD DIlI~ ~ a,)_ CIII _~.~D CII W ' Dll Wf (ao) ] 
(93b) 

m Ep = 
,'Y [,~s,'- , ~°.,~] 

(93c) 

-I- I l l  

a2,[~ = 

-,,,(,,° ~),.,~ 
(93d) 

- -  I l l  a 
PD 

#D DII W~ (ao) 1 
(93e) 

+C m 
] , f  - 

(,, ~) ° 2 v af 

[18D "~D DIII ~ (~D al ) - CIII /~" ( ~D al)] [ ~D ~"~D W~(ao)-DllW,(ao) 1 
(93f) 

~ C  Ill 

l , f  = 
/ 

-2(~D~-~D) a~ I ~D p'~-'~D Clv ~'(a2)- Dlv '~ (a2) ] 
(93g) 

+ U  m 

Dll ~e (ao)~ "-- 

(93h) 
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in these equations, +7~" are the multipole coefficients of 
outward propagating waves at the inner radius of the sphere 
surface; el", inward propagating waves at the inner surface 
of the sphere; E~ n, standing waves between the outer damper 
and the sphere inner surface; ±olaf e, outward and inward 
propagating waves, respectively, in the outer damper; ~C~'}, 
outward and inward propagating waves, respectively, in the 
region between the two dampers; +c~.¢, outward and inward 
propagating waves, respectively, in the inner damper; and 
A} n, standing waves between the inner damper and the center 
of the sphere (exclusive of the source). 
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There are, of course, analogous equations for the TE wave muitipole coefficients and their 
associated auxiliary functions, but these will not be stated. 

3.3.3 Coupling of the Damped Cavity and the Biconical Source 

As shown in previous sections, the multipole coefficients of  standing waves in the center 
of a damped cavity (cavity multipole coefficients) are related to the source multipole 
coefficients through equations that account for the electrical properties of all other regions 
of the sphere: Thus, to the extent that linear superposition is valid, it is possible to calculate 
the electric and magnetic fields in the vicinity of  the antenna by merely adding together the 
contributions of the source multipoles and the cavity multipoles. Strictly speaking, however, 
the problem is n o t  linear, since the presence of the cavity modifies the current distribution in 
the source. In the treatment of  Sections 3.2.1 and 3.2.2 this interaction has been neglected in 
determining the source current distribution and the associated source multipole coefficients. 
Since the problem is virtually intractable if this interaction is included, the conditions for 
which the linear approximation is adequate should be ascertained. 

Essentially the source cannot "see"  the first damper until the leading edge of the 
transmitted pulse reflects from the damper inner surface and arrives, again, at the antenna. 
Thus, linearity is an adequate assumption for all times t < (2ra/C). Accordingly, the linear 
treatment is valid for all circular frequencies, ~0 > (C/2ra). This means that the theory is 
correct for reduced damper radii, kra > 1/2, or reduced cavity radii (i.e., sphere "size 

.parameters" in optical terminology), kR > R/2ra). Since the primary TM resonant mode of 
the cavity occurs at kR = 2.74, linear coupling is valid as long as ra/R > (1/5.48) = 0.182, 
and this limit has, indeed, not been violated in the VKF 12-ft sphere experiments in which 
ra/R = 0.8. Obviously, the above limit must not be disregarded in experimental design, 
since the presence of any conducting surface as close as R/5.48 to'the source will modify the 
source current distribution (at frequencies of interest) in comparison to the current 
distribution calculated when it is assumed that the source radiates into an unbounded 
medium. 

Assuming the validity of linear superposition, and evaluating Eq. (17), we determine the 
impedance of the biconical source plus damped cavity.to be 

l I = (95) 

49 



A E DC-TR-80 -58  

where A t, = A~, and it should be recalled that only odd values of tcontribute to the sums in 

Eq. (95), on account of the cylindrical symmetry of the biconical source. The frequency 
response of the system is, then, obtained by inserting Eq. (95) into Eq. (19) and evaluating 

(numerically) the results at all frequencies greater than [~minl -- C/2ra. 

4.0 RECOMMENDATIONS FOR FUTURE WORK 

AND CONCLUDING REMARKS 

This report has presented a theoretical formulation to describe the propagation of both 

TM and TE waves through an internally excited, damped spherical cavity. The general 
treatment developed herein allows consideration of an arbitrary central source current 

distribution and an arbitrary number of dampers of finite width. 

Several features of the present treatment are unique and worthy of further comment: 

. The present theory considers dampers with distributed electrical properties and 
finite width, and, if desired, each effective damper width can be treated as an 

adjustable parameter, in order to compensate for inhomogeneities in the damping 
mesh. Most similar investigations have assumed that the dampers can be treated as 
infinitely thin surfaces of discontinuity. While the finite damper width is not very 

significant in analysis of the 12-ft sphere experiments, some future analyses of 

damping configurations may require inclusion of finite width effects. 

. The present theory uses a matrix formulation to obtain the multipole expansion 
coefficients throughout the regions of a cavity containing N dampers. The 
computational flexibility afforded by the modular structure of this matrix permits 
easy addition or deletion of dampers. In addition, .such an approach is 

computationally more convenient and probably more stable than more direct 
solution procedures. Although this matrix approach will be adopted in encoding 
the theory, explicit solutions for the single-damper and dual-damper multipole 

expansion coefficients are also presented in this report. In addition, the conditions 
under which the finite width of the dampers must be considered are investigated. 

. The present theory uses two scalar Hertz-Debye potentials to describe electric and 

magnetic fields outside the source region, whereas the conventional vector and 
scalar potentials are used by most authors There are two advantages associated with 
the use of these potentials: 
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a .  The propagating fields are automatically separated into transverse magnetic 
(TM) and transverse electric (TE) waves in any geometry in which Laplace's 

equation is separable, and 

b. The use of these potentials facilitates the solution of the inhomogeneous 
wave equations which represent the radiation from a centralized, arbitrary 
distribution of source currents. The Hertz-Debye potentials relate all other 

electric and magnetic field components to the radial field components, whose 
solutions are obtained by the use of Green's functions. These solutions show 
that only TM waves are radiated by cylindrically symmetric source currents, 

and TE waves are radiated either if an azimuthal current flow occurs or if 

azimuthal gradients in polar currents occur. 

The present theory includes a closed-form solution for the multipole expansion 
coefficients which represent radiation into an unbounded medium by an 

uncapped biconical antenna. In addition, the two coupled integrodifferential 
equations--which separately describe the current distribution in the conical 
sections and in the caps of a capped biconical antenna, radiating into an 
unbounded mediummare derived by use of a gauge transformation. These 
equations can be solved by the method of moments or by a similar finite-element 
numerical technique. The multipole expansion coefficients for a capped bicone 

can then be obtained by substituting the bicone current expansion into the TM 
wave Green's function solution. 

The frequency response (and, by inverse Fourier transformation, the time 

dependent pulse waveform) of the internally excited, damped cavity is obtained 
from the characteristic impedance of the bicone and the input impedance of the 
antenna, radiating into the damped cavity. This impedance, in turn, is calculated 
from the multipole expansion coefficients of the source and the first standing 
waves in the region between the source and the damper. The antenna impedance 
and frequency response of the antenna, radiating into an unbounded medium, 
can be obtained simply by setting the multipole coefficients of the standing 

waves equal to zero. This procedure provides a check on the accuracy of the 

source current solution. 

Future work in this area should follow the directions indicated below: 

. Encode the theory, including the bicone source current determination, with 

options to calculate the (polar) angular and radial electric and magnetic field 
distributions throughout the cavity at specified frequencies and to calculate only 

the frequency response of the cavity at the bicone feed terminals (hence, by 
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. 

3. 

. 

inverse Fourier transformation, the wave form of the sensor current pulse). The 
primary result of this work would be a comparison between theory and 
experiment. The tasks that follow cannot be implemented until this has been 
accomplished. 

Adapt.the theory and its coding to cylindrical coordinates. 

Account for the effect of openings to accommodate instrumentation and X-ray 
beam paths in the damping mesh. In an infinitely thin damper, such openings are 
denoted "Bethe appertures" when they are smaller than a wavelength, and they 
act as dipole sources located at the positions of the openings. 

Generalize the theory to account for an off-centered, but still axisymmetric 
s o u r c e .  

. 

2. 

3. 

4. 

. 

. 

7. 

8.  

. 

10. 

R E F E R E N C E S  

Jackson, J. D..Classicai Electrodynamics. Second edition. Wiley, New York, 1975. 

Stratton, J. A. Electromagnetic Theory. McGraw-Hill, New York, 1941. 

Van Bladel, J. Electromagnetic Fields. McGraw-Hill, New York, 1964. 

Gray, C. G. "Multipole Expansions of Electromagnetic Fields Using Debye 
Potentials." American Journal of  Physics, Vol. 46, No. 2, February 1978, pp. 
169-179. 

Abramowitz, M. and Stegun, I. A., eds. Handbook of  Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables. U. S. Government Printing Office, 
Washington, D. C., 1964. 

Shelkunoff, S. A. Advanced Antenna Theory~ Wiley, New York, 1952. 

Jones, D. S. The Theory of  Electromagnetism. Pergamon Press, Oxford, 1964. 

Harrington, R. F. Field Computation by Moment Methods. MacMillan, New York, 
1968. 

Butler, C. M. "Evaluation of Potential Integral at Singularity of Exact Kernel in 
Thin-Wire Calculations." IEEE Transactions on Antennas and Propagation, Vol. 
AP-23, 1975, pp. 293-295. 

Wilton, D. R. and Butler, C. M. "Efficient Numerical Techniques for Solving 
Pocklington's Equation and Their Relationships to Other Methods." IEEE 
Transactions on Antennas and Propagation, Vol. AP-24, 1976, pp. 83-86. 

52 



AEDC-TR-80-58 

11. 

12. 

13. 

Wilton, D. R. "Dynamic Analysis of a Loaded Conical Antenna Over a Ground 
Plane." AFOSR-TR-76-1080, August 1976. 

Kantorovich, L. V. and Krylov, V. I. Approximate Methods of  Higher Analysis. 
C. D. Benster, trans. Interscience Publishers, New York, 1958. 

Butler, C. M. and Van Bladel, J. "Electromagnetic Fields in a Spherical Cavity 
Embedded in a Dissipative Medium." IEEE Transactions on Antennas and 
Propagation, Vol. AP-12, 1964, pp. 110-118. 

53 



A E D C-T R -80-58 

AT 

aT 
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BT 

bT 

C [ I - V  

m -+ cje 
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D 

Dll  - V 

---djn~ 

W 

+-e T 

fll ,  II1 

NOMENCLATURE 

Standing TM wave multipole coefficients 
(exclusive of source) 

Source TM wave multipole coefficients 

Magnetic induction 

Standing TE wave multipole coefficients 
(exclusive of source) 

Source TE wave multipole coefficients 

for central cavity region 

for central cavity region 

TM wave auxiliary functions defined in Eqs. (88) and (94) 

Speed of light in vacuum 

Outwardly and inwardly propagating TM wave multipole coefficients for 
region between " j th"  and "j  + l th"  dampers 

Damper thickness 

Displacement 

Derivatives of TM wave auxiliary functions defined in Eqs. (88) and (94) 

Outwardly and inwardly propagating TE wave muitipole coefficients for 
I region between "j  th and "j  + 1 th" dampers 

Electric field 

Standing TM wave multipole coefficients for region between outermost 
damper and sphere surface 

Outwardly and inwardly propagating TM wave multipole coefficients for 
region between outermost damper and sphere surface 

TE wave auxiliary functions defined in Eq. (90) 
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Green's functions used in solution of inhomogeneous Helmhoitz 
equations 

Derivatives of TE wave auxiliary functions defined in Eq. (90) 

Magnetic field 

Axial length of single cone of a biconical antenna (see Fig. 2) 

Electric current 

Complex constant appearing in Eqs. (40) through (42) 

Electric current density 

Integral defined in Eq. (45) 

Source current density 

Kernel function defined in Eq. (71) 

Wave propagation constant 

Wave propagation constant for a nondissipative medium 

Radial length of single cone of a biconical antenna (see Fig. 2) 

Angular momentum operator 

Kernel function defined in Eq. (71) 

Interface matrices defined in Eqs. (84) and (85) 

Standing TE wave multipole coefficients for region between outermost 
damper and sphere surface 

Inwardly propagating TE wave multipole coefficients for region between 
outermost damper and sphere surface 

Kernel function defined in Eq. (71) 
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N 

PE,M 

Pl' (cos 0) 

R 

RI,2 

r 

r 

TE 

TM 

t () 

tbc 

top 

U 

V 

V 

X 

Y 

Number of dampers 

Hertz vectors defined by Eq. (19) 

Legend re polynomial of order e 

Sphere radius 

Distances defined in Eqs. (56) and (57) 

Position vector to field observation point 

Position vector to source point 

Scalar function defined in conjunction wit.h Eq. (25) 

Arbitrary scalar function 

Transverse electric 

Transverse magnetic 

Time 

Thickness of current-carrying region in sides of antenna 

Thickness of current-carrying region in caps of antenna 

Transformed field defined in Eq. (49) 

Potential difference between the two halves of a biconical antenna 

Arbitrary vector function 

Column vectors of unknown multipole coefficients [see Eq. (83)] 

Column vectors associated with Eq. (83) 

Spherical harmonic functions 
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Wave impedance 
s 

Characteristic impedance of a beconical antenna 

Impedance of a nondissipative medium 

Impedance of free space 

Coordinate along axis of symmetry 

Dimensionless radius of the "jth" interface 

Outwardly and inwardly propagating TM wave muhipole coefficients at 
the " j th"  interface 

Ratio of propagation constants in dissipative and nondissipative media 

Outwardly and inwardly propagating TE wave multipole coefficients at 

the " j th"  interface 

OutWardly propagating TM wave multipole coefficients at the sphere 

surface 

Radial location of antenna tip (see Fig. 2) 

Penetration depth 

Outwardly propagating TE wave multipole coefficients at the sphere 
surface 

Real dielectric permittivity 

Complex dielectric permittivity 

Electrical conductivity 

Magnetic permeability 

Hertz-Debye potentials for TM and TE waves 
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Xl'(k,ko,d) 

X~(~', r ' ,  ~')'] 

X~,; (r, 0, ~ ' ) [  

Complementary antenna function defined in Eq. (48) 

Modified Green's functions defined in Eq. (64) 

Antenna cylindrical coordinate 

0¢ Charge density 

0o Radius of antenna cap 

~b Gauge variable defined in Eq. (49) 

~,(kr) Ricatti-Bessel functions of order e 

~'~'2(kr) Ricatti-Hiinkel functions or order I' 

X Wavelength 

.~ Circular frequency 

SUPERSCRIPTS 

E 

M 

m 

T 

-I- 

Pertains to electric Hertz-Debye potential (source of TM waves) 

Pertains to magnetic Hertz-Debye potential (source of TI~ waves) 

Azimuthal index for spherical expansion 

Denotes matrix transpose 

Denotes source coordinate (except in Sec. 3.3, where it denotes 
differentiation) 

Denotes frequency domain 

Denotes outwardly propagating wave 
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A 

bc 

cp 

D 

E 

1I, 11I . . . .  

t 

M 

Denotes inwardly propagating wave 

Denotes unit vector 

Denotes vector 
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Pertains to antenna 

Pertains to conical surfaces o f  biconical antenna 

Pertains to cap surfaces of  biconical antenna 

Pertains to damper 

Pertains to electric Hertz-Debye potential (source of  TM waves) 

Pertain to cavity regions shown in Figs. 3 and 5 

Polar index for spherical expansion 

Pertains to magnetic Hertz-Debye potential (source of  TE waves) 

Denotes quantity evaluated at surface of  cavity 

Denotes matrix or column vector 
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